

Figure 3-7 Mobile to Mohile - MSC Performs Query

3.3 Feature Interactions

This section describes the effect of WNP on the current base of wireless services.

3.3.1 Operator Services

An MSC can connect to an operator tandem switch in one of the three following ways:

- via a Type 1 connection to a local telephone company central office switch that interconnects with the operator tandem;
- via a Type 2D connection directly to the operator tandem; or
- via a Type 2A connection to an access tandem that interconnects with an inter-exchange carrier operator tandem using Feature Group D (FGD) signaling.

A mobile station dialing any of the following should route the call directly to the operator tandem where, if necessary, it will perform the query:

- 0-
- 00-
- 10xxx0-
- 101xxxx-0-
- 0-NPA-NXX-XXXX
- I0XXX-0-NPA-NXX-XXXX
- 101XXXX-0-NPA-NXX-XXXX

Existing ANI information transfer and AMA recording at the operator tandem will be sufficient to support WNP. However, the MSC must be modified to forward the MDN and not the MSID as the ANI digits.

3.3.2 Roamer Access Port

The Roamer Access Port service is one of several means of supporting call termination to roamers. Another feature of the Roamer Access Port is to allow the caller to directly be connected to the serving system, eliminating the call segment from the home system to the serving system.

Under the Roamer Access Port services, today, the caller dials a roamer access port number to reach the visited system and enters a roamer's MIN (as an MDN). When the MDN and MSID are separate, the serving system will also need to know the roamer's MSID.

3.3.3 Emergency Services

An MSC can connect to Emergency Services Providers (ESPs) in many ways. The current arrangements typically do not automatically forward the mobile station caliback number to the ESP. For such arrangements, the ESP attendant must verbally request the caliback number, if desired. FCC rules regarding emergency service calls from wireless systems dictate that by April 1, 1998, an MSC must automatically forward the mobile station caliback number along with information identifying the cell site of call origin.

In any proposed configuration, the MDN must be provided to the ESP for callback purposes. The impact on the MSC with the WNP is such that the MSC must be modified to forward the MDN and not the MSID.

To meet the proposed April 1, 1998, FCC requirements, both the MF-FGD signaling and the SS ISUP (CPN) signaling arrangements may, in fact, be utilized. Therefore, the MSC must forward the MDN and not the MSID as the FGD ANI digits and must forward the MDN in the CPN parameter of the SS7 ISUP IAM message. This requirement applies to both home mobile stations and roaming mobile stations. Consequently, the MDN must be retrieved from the home system for any registered roaming mobile stations.

The impact of WNP with regard to Emergency Callback whether the call back is over a roamer access port or otherwise requires further study.

3.3.4 Short Message Service

3.3.4.1 Impact of Number Portability

Today, the recipient of a short message is identified by an MDN. The originating network uses the dialed MDN to route the short message to the destination home system. The dialed MDN is the same as the MIN or the first 6 digits of the dialed MDN are the same as the first 6 digits of the MIN if the MDN and MIN are separated. Typically, the first six digits of today's dialed MDN or MIN provide sufficient routing information for the short message to be delivered to the destination home system.

The wireless industry has decided to separate the MSID and the MDN to support WNP. As a result, Short Message Service (SMS) delivery is impacted. SMS will not operate properly as it currently defined if the destination mobile station has ported its MDN. When the mobile stationorts to another service provider, it is assigned a new MSID. The new MSID, particularly the first six digits, will identify the new service provider. However, when a short message is initiated to the ported mobile station, the calling party will only provide the MDN to the network. Since the destination MS has ported, the originating Short Message Entity (SME) or the SS7 network must analyze all the digits of the MDN to derive the necessary routing information to deliver the short message to the destination home system of the ported mobile station.

Five alternatives have been proposed to address the SMS routing problem in the WNP environment. In order to discuss and compare the alternatives, they must each address the following scenarios:

(a) Direct Routing to the Destination Home MC

If the short message need not go through the message originator's home MC, the short message is sent to the destination home MC directly from the originator's serving MSC. The case where a short message is sent from the originator's home MC to the destination home MC is covered under this scenario.

(b) Force Routing through the Message Originator's Home MC

If the SMS Origination Restriction of the originator indicates that the short message must be routed through the originator's home MC, the short message should be sent to the originator's home MC first.

(c) International Roaming

Each alternative must work if the short message is to be sent across the national boundaries (e.g., from the originator's serving MSC in one country to the destination home MC in another country).

Messages routing across national boundaries involves global title translations (GTTs) at the STPs in the national SS7 networks, originating and destination, and at the international gateway STPs in the international domain/level. This section focuses on messages required to be sent across the national boundaries and the translation types that may be required when a particular alternative is discussed.

3.3.4.2 Possible SMS Delivery Alternatives

The alternatives described in this section are to provide the industry with a starting point in addressing SMS impact in a WNP environment. The final solution(s) is for further study.

The descriptions of the alternatives below illustrate the successful delivery of a mobile originated short message to a ported MS. Also, these alternatives assume that the originating system is different from the destination system. Lastly, these alternatives are illustrated using IS-41 messaging protocol as an example.

The call flow procedures described below for each of the five alternatives are for scenario A ar in the domestic domain. However, the discussion of the advantages and disadvantages of each alternative will cover scenarios A, B and C.

The following are for clarification in describing the alternatives: 30

- Short Message Entity (SME) is a functional entity that composes and decomposes short messages. It may be located within and be indistinguishable from an MSC, HLR, VLR MS, or MC.
- The message center (MC) is an entity that stores and forwards short messages. The MC may also provide supplementary services for SMS.

The following translation types have been identified in the forthcoming alternatives as potentially needed for routing short messages:

- MIN-to-MC translation. This translation type is existing, TT=12.
- IMSI-to-MC translation. This translation type is also existing. TT=13.
- MDN-to-MC translation. This translation type has not yet been defined.
- LRN-to-MC translation. This translation type has not yet been defined.
- MDN-to-NP-SCP translation. This translation type has not yet been defined. This
 translation type is needed in alternatives 2, 3 and 4 if the short message is to be delivere
 outside of the NPAC region.

SMS Alternative 1: SMS Forward to Serving Home MC

In alternative 1, an SMS Delivery Point to Point (SMDPP) message is first routed to the donor message center (MC). The donor MC then forwards the short message to the subscriber's home destination MC. The short message is routed to the donor MC by an MDN-to-(donor) MC translation via a 6-digit GTT at the STP or internal lookup table.

The donor MC locates the correct "serving" home MC of a ported subscriber by mapping the dialed MDN to its home MC (i.e., the translation is established via business arrangement). Thei it forwards the message to the serving home MC. The donor MC may be the "original" home MC that serves the MDN before it is ever ported or may be an MC that provides an SMS forwarding service to "original" home systems that do not support SMS (e.g., third party donor MC or wants a third party to perform the forwarding function).

In the situation where the original system is a non-SMS capable system (i.e., had no MC), it is preferable for the third party donor MC to serves all the ported subscribers of the original syste (within an NPA-NXX block). This will allow the preservation of 6-digit translation (e.g., 6-digi

³⁰ The definitions are from IS-41, TIA/EIA SP 3588.1, Functional Overview, sections 5.1.6 and 5.1.10.

The following illustration along with the call flow procedures describes a successful short message delivery to a ported MS-based SME (i.e., terminating supplementary services):

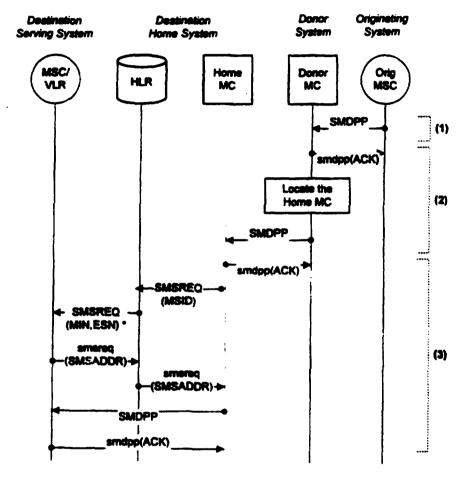


Figure 3-8 Alternative 1 for SMS Delivery

The detailed steps are as follows:

(1) The originating MSC routes the short message to the donor MC by performing an MD to-MC translation (i.e., via GTT at the STP or internal table).

If the subscriber has not been ported the donor MC is the subscriber's destination hom MC and should existing procedures to deliver the short message.

^{*} These messages are sent if the HLR does not have a current temporary SMS routing address

(2) When the donor home MC receives the SMDPP requesting delivery to a ported MS. it identifies the destination home MC of the ported MS by performing an MDN-to-MC lookup.

In the event that the donor MC is able to forward the SMDPP to the destination home MC or that it is the destination home MC, the donor MC responds to the originating system with an SMDPP positive acknowledgment.

If the MDN has not been ported out, the donor MC (which is the destination home MC) delivers the message using existing procedures. In some instance, it may be more efficient for the donor MC to determine if it is the home MC before it uses the MDN-to-MC lookup table.

In the ported MDN case, the donor MC forwards the short message to the destination home MC.

(3) When the destination home MC receives the SMDPP request, it delivers the short message following existing procedures.

If the donor MC is not able to forward the SMDPP to the destination home system because the donor MC fails to map the MDN to the destination home MC (e.g., there is no business arrangement or the SMDPP was routed to the donor MC in error), the donor MC responds to the originating system with an SMDPP negative acknowledgment with the SMS_CauseCode=1 for address translation failure.

The advantages of Alternative 1 are as follows:

- It uses the 6-digit MDN-to-MC translation to get to the donor MC.
- There is no need to query the NP SCP. This is a cost saving for the carriers if they have to pay for NP SCP queries.
- Wireless carriers may establish reciprocal business arrangement for the donor MC service.
- Short messages for MDNs that are not ported do not need to be forwarded.
- Short messages from other countries will be delivered to the donor MC using the MDNto-MC translation.
- There is no need for additional translation types. Thus, no need to pay for additional GTTs.

The disadvantages of Alternative 1 are as follows:

- Business arrangements with every donor MC or third party donor MC need to be established to ensure that SMS forwarding will be provided by the donor MC.
- The donor MC needs to maintain an MDN-to-"serving home" MC lookup table. The
 donor MC needs to be informed by the old service provider to terminate the message

forwarding service and by the new service provider requesting for the donor MC to forward the ported subscriber's messages to the new home MC. The new service provider will have to establish new business arrangement with the donor system while the old provider terminates its arrangement. This is a responsibility that the donor MC assumed because of its business arrangement. Thus, this function should be inherent to the business agreement.

The following items with regard to Alternative 1 should be further investigated:

Administration of the MDN-to-MC lookup table within the donor MC.

SMS Alternative 2: Message Center Ouery, LRN response to Originating MC.

In alternative 2, the short message is always sent to the originator's home MC based on the message originator's MSID (i.e., MSID-to-MC GTT at the STP or internal lookup table at the originating SME). When the originator's MC receives the SMDPP, it queries the NP SCP for the LRN associated with the dialed MDN. The short message is routed to the destination home MC using the LRN (i.e., LRN-to-MC GTT at the STP or internal lookup table at the originator's MC).

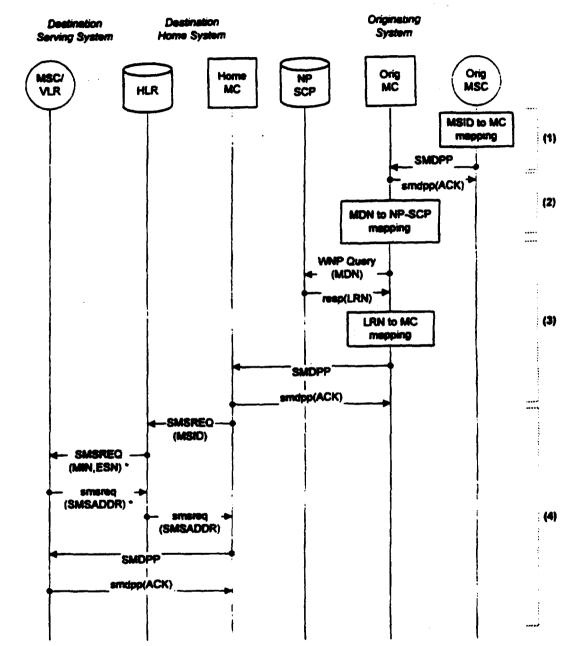


Figure 3-9 Alternative 2 for WNP SMS Delivery

^{*} These messages are sent if the HLR does not hav a current temporary SMS routing address.

The detailed steps are as follows:

- (1) The originator's MSC forwards the SMDPP to the originator's home MC using the MSID-to-MC translation via a 6-digit GTT at the STP or internal mapping.
- (2) The originator's home MC retrieves the dialed MDN from the SMDPP message. It sends an IS-41 query message to the NP SCP through an STP. The STP performs an MDN-to-NP SCP GTT to identify the appropriated NP-SCP and forward the query message to that NP-SCP.
 - The NP-SCP maps the MDN to its associated LRN and responds with the LRN to the originator's home MC.
- (3) Either an LRN-to-MC GTT translation is done at the STP or, using an internal table in the originator's home MC, the SMDPP message is routed to destination home MC.
- (4) The destination home MC delivers the message using existing SMS procedures.

The advantages of Alternative 2 are as follows:

- The existing MSC-NP SCP interface can be used for the MDN-to-LRN translation to support SMS, although it is defined call routing.
- The NP SCP does not need to maintain additional routing information for SMS.

The disadvantages of Alternative 2 are as follows:

- The originator's home MC needs to have IS-41 query capability to query the NP-SCP.
- If multiple MCs serve the same MSC the network needs to support multiple LRNs per MSC or use one of the four digits of LRN for MC.
- New translation types are needed to support the MDN-to-NP SCP GTT (for intersystem) at the STP and the LRN-to-MC GTT at the originator's home MC or STP.
- Administration for the point code of MCs used for the LRN-to-MC GTT will be neede

The following items with regard to Alternative 2 should be further investigated:

- In order to support international roaming, an originating system (i.e., originator's MC)
 that is in a foreign country needs to query the NP SCP for an LRN before the SMDPP
 can be routed to the destination home MC.
- Business arrangements will need to be established with remote NP SCP providers so the
 queries can be targeted to the appropriate NP SCP with the necessary translation
 information.

SMS Alternative 3: MSC Ouery - LRN response to Originating MSC

In alternative 3, the originator's MSC queries the NP SCP for the LRN associated with the diale MDN. Then, the originator's MSC routes the short message to the destination home MC using the LRN (i.e., LRN-to-MC GTT at the STP or internal lookup table at the originator's MC).

Originating Destination Serving System Home System System Orig MSC/ Home HLR **VLR** MC MSC SCP WNP Query (1) (MDN) resp(LRN) LRN to MC (2) mapping SMDPP smdpp(ACK) SMSREQ (MSID) SMSREQ (MIN.ESN) : (3) (SMSADDR) . (SMSADOR) **SMDPP** smdpp(ACK)

Figure 3-10 Alternative 3 for SMS Delivery

^{*} These messages are sent if the HLR does not hav a current temporary SMS routing address.

The detailed steps are as follows:

- (1) The originator's MSC sends an IS-41 query message with the MDN to the NP-SCP through the STP. The STP performs an MDN-to-NP SCP GTT to determine the appropriate NP SCP to forward the query.
 - The NP-SCP maps the MDN to its associated LRN and responds with the LRN to the originator's MSC.
- (2) Either an LRN-to-MC GTT is done at the STP or, using the internal table in the MSC, the SMDPP message is sent to the destination home MC.
- (3) The destination home MC delivers the message using existing SMS procedures.

The advantages of Alternative 3 are as follows:

- The existing MSC-NP SCP interface can be used for the MDN-to-LRN translation to support SMS, although it is defined call routing.
- The NP SCP does not need to maintain additional routing information for SMS.

The disadvantages of Alternative 3 are as follows:

- The originator's MSC needs to query the NP-SCP.
- New translation types are needed to support the MDN-to-NP-SCP GTT at the STP and the LRN-to-MC GTT at the MSC or STP.
- Administration for the point code of MCs used for the LRN-to-MC GTT will be needed
- If force routing is invoked, the originator's MSC, after it receives the LRN from the NI SCP query response, needs to forward the LRN to the MC of the originating system.
 Enhancement to the IS-41 standard is needed.
- If multiple MCs serve one MSC, the network needs to support multiple LRNs or use or
 of the four digits of LRN for MC.

The following items with regard to Alternative 3 should be further investigated:

- In order to support international roaming, an originating system (i.e., originator's MSC that is in a foreign country needs to query the NP SCP for an LRN before the SMDPP can be routed to the destination home MC. This item needs further investigation.
- Business arrangements will need to established with remote NP SCP provider so that
 queries can be targeted to the appropriate NP SCP with the necessary translation
 information.

SMS Alternative 4: MDN-to-MSID Translation at the NP SCP

Alternative 4 requires that the NP SCP contains MDN-to-MSID translations. The MDN-to-MSID translations need to be maintained and administered by the regional NPAC-SMSs. Updates for the translation may use the same method defined for MDN-to-LRN translations.

This scheme requires the originating system to query the NP SCP for an MDN-to-MSID translation. Then, the originating system routes the short message to the destination home system using the MSID provided in the query response.

In the event that the dialed MDN is not within the coverage area of the regional NPAC-SMS, th originating system may have to query an NP SCP that contains the data for the region of the dialed MDN or query an NP SCP that contains nationwide NP data.

The first figure illustrates the call flow for the scenario when the MSC queries the NP SCP for the called party's MSID and the second figure shows the call flow for the MC querying the NP SCP.

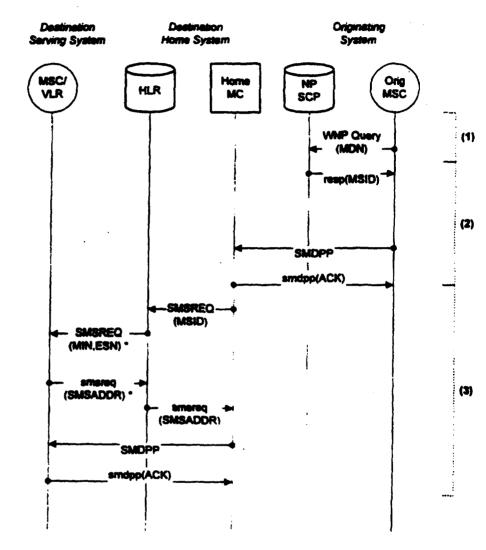


Figure 3-11 Alternative 4 for WNP SMS Delivery

The detailed steps are as follows:

- (1) The MSC of the originating system queries the NP SCP with the dialed MDN. The NE SCP responds to the query with the MSID associated with the dialed MDN.
- (2) The originating system routes the SMDPP message to the destination home MC using the MSID.

^{*} These messages are sent if the HLR does not hav a current temporary SMS routing address.

(3) When the destination home MC receives the SMDPP request, it delivers the short message following existing procedures.

The advantages of Alternative 4 are as follows:

- The existing MSC-NP SCP interface can be used for the MDN-to-LRN translation to support SMS, although it is defined call routing.
- The MSID-to-MC translation can be used to route short messages to the destination home MC.

The disadvantages of Alternative 4 are as follows:

- NP SCP, local SMS and NPAC-SMS need to support the MDN-to-MSID translations f all wireless subscribers within its region.
- The MSC or the MC need to have the capability to query the NP SCP for an MSID.
- The NP SCP query element needs new protocol.
- Under scenario B where message routing is through the originator's home MC, if the
 originator's MSC is performing the NP SCP query for an MSID, the originator's MSC
 needs to forward the MSID to the originator's home MC.

The following items with regard to Alternative 4 should be further investigated:

- Since NPAC-SMSs only contain regional data, it is foreseeable that a query may be launched to an NP SCP that only contain data from the region it is in. Thus, it may be preferable to have the MDN-to-MSID translations for wireless subscribers available nationwide.
- International roaming may require this alternative to have a gateway MSC to launch a
 query to the NP SCP for the MSID of the called party or may require the foreign count
 to query the NP SCP.

SMS Alternative 5 - 10-digit GTT at the NP SCP

In alternative 5, the originating MSC or MC routes an SMS Delivery Point to Point (SMDPP) message to called party's home destination MC via a 10-digit GTT at the NP SCP. When the short message arrives at the STP, a 6-digit MDN-to-NP SCP GTT is performed. This may nee a new translation type (TT) to forward the message to the NP SCP. Then, the NP SCP maps the MDN to its associated LRN and the incoming translation type to an outgoing translation type 1 LRN-to-MC translation. The NP SCP relays the short message to the destination MC via a 6-digit LRN-to-MC GTT at an STP.

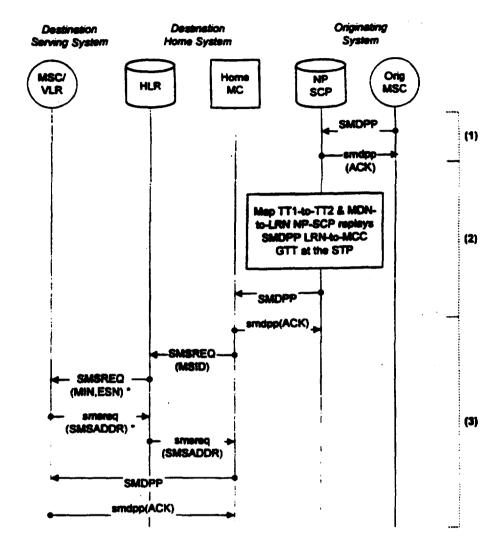


Figure 3-12 Alternative 5 for SMS Delivery

* These messages are sent if the HLR does not hav a current temporary SMS routing address.

The detailed steps are as follows:

- (1) The originating MSC or MC routes the SMDPP to the destination MC.
- (2) The STP performs a 6-digit MDN-to-NP SCP translation for SMS. When the NP SCP receives the message, it translates the incoming translation type (TT1) to an outgoing translation type (TT2) and maps the MDN to its associated LRN. The NP SCP relays t

- short message to the destination MC. Then, the STP performs a 6-digit LRN-to-MC translation to route the message to the destination MC.
- (3) When the destination home MC receives the SMDPP request, it delivers the short message following existing procedures.

The advantages of Alternative 5 are as follows:

- Step 2 uses the same 10-digit intermediate GTT at the NP SCP process that the wireling industry is developing/investigating for the support of services such as CLASS. Interswitch Voice Messaging, Calling Name, and ABS/LIDB.
- The NP SCP does not need to maintain additional routing information for SMS.
- Short messages from other countries will be delivered to the destination home MC using this alternative.
- 10-digit intermediate GTT at the NP SCP is more efficient than querying the NP SCP is the LRN.

The disadvantages of Alternative 5 are as follows:

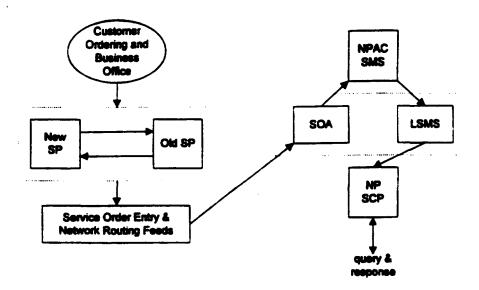
- The NP SCP needs to the have the capability to perform a 10-digit intermediate GTT the SCCP level.
- There is a need for two new translation types; one for MDN-to-NP SCP (MC) translat and the other for the LRN-to-MC translation.

Administration for the point code of MCs used for the LRN-to-MC GTT will be neede

•

The following items with regard to Alternative 5 should be further investigated:

None identified.


4. BUSINESS SYSTEMS, OPERATION SYSTEMS AND BILLING

4.1 Service Order and Provisioning

4.1.1 Process Flow Overview

Figure 4-1 below illustrates the overall information sharing process for portability.³¹

Figure 4-1 Service Order and Provisioning Process Flow

The NPAC-SMS is an administration center developed, owned and operated by a neutral, third party company (i.e., neutral to all telecommunications service providers). It collects and disseminates information that maps ported subscribers to service providers in a geographic area Presently, seven geographic areas have been agreed upon³² for covering the United States, with areas roughly corresponding to the state boundaries associated with the seven Regional Bell Operating Companies (RBOC).

The LSMS is logical Operations Systems (OS) function that accepts downloads from the NPAC SMS and disseminates the data to the NP-SCPs. This logical function could be a stand-alone system on the WSP premise, an application within another OS, or function provided by another company. A WSP can deploy a single LSMS, LSMSs per NPAC-SMS or LSMSs per NP-SCP;

³¹ North American Numbering Council LNP Architecture and Administrative Plan, Issue 5, March 4, 1997.

³² ibid.

this deployment will depend upon the WSPs infrastructure. NP-SCP platform deployment, and network coverage area.

The Service Order Activation (SOA) function is similar to the LSMS in that it is a function which ties the NPAC-SMS with the WSPs service order processing systems. As with the LSN this function could be a physically separate system or a function within another system.

The interface between the NPAC-SMS and the LSMS is an open interface based upon the Common Management Information Protocol (CMIP). This interface, including the CMIP objects, is currently documented in various locations, mostly on a state or regional basis; and to objects can vary among the NPAC-SMSs. However, the NANC NP Working Group is present looking into creating a single interface document for all of the regions.

The interface between the NPAC-SMS and the SOA is also a CMIP-based interface and similarly documented.

The interface between the LSMS and the NP-SCP as well as the between the SOA and the WSP's Service Order Entry systems is at the discretion of the WSP.

The processes by which these systems communicate information is discussed below.

4.1.2 Provisioning a Number Block Open for Portability

Once a number block opens for portability, every telecommunications provider within the registerving that block must provision the block as open within its switches. More specifically, a WSP must populate the appropriate number portability tables in the MSC with the open NPA-NXX so that the NP trigger will trigger the query upon detecting that a called party number's NPA-NXX matches this open NPA-NXX. All open blocks served within the region must be provisioned in the MSC. The determination of how many or few open blocks are provisioned a single MSC is at the discretion of the WSP depending upon the architecture deployed by the WSP balanced with the responsibility of supporting WNP per the FCC order and this document

The source for open number blocks will be the LERG. The means for notification is still to be determined. The format of the information will be in NPA-NXX blocks.

4.1.3 Notifying the Receipt of a Ported Subscriber

The process of notifying the receipt of a port subscriber involves (a) notifying the NPAC-SMS the new LRN for the DN so that it can broadcast the new LRN to all SPs within the region, and (b) coordinating the change with the old SP (e.g., service activation, line side provisioning).

A standard process definition is currently being worked by the NANC NP Working Group bas upon efforts by various states in defining the flow. This document will not attempt to describe the details of these flows and urges WSPs to review and comment on the work in progress.

The essence of this flow, however, can be described at a high level:

- (a) The New SP receives written authorization regarding the subscriber's intention to port.
- (b) The New SP communicates the port to the Old SP via an Electronic Data Interchange (EDI) interface.
- (c) The Old SP confirms the receipt of notification
- (d) The New SP (and optionally the Old SP) notifies the NPAC-SMS of the new LRN for the DN via the SOA.
- (e) The New SP and the Old SP coordinate the activation date and line side provisioning (automated and manual processes are being defined).
- (f) The subscriber is activated.
- (g) The NPAC-SMS downloads the new LRN to all LSMSs. All SPs update their NP-SCP with the data in the LSMS.
- (h) Calls route to the new, ported subscriber per the WNP Solution.

Although simplified, one can realize the complex yet crucial coordination that must occur between two SPs. In fact, the lines of communication (manual and/or electronic) must be established between every SP (wireline and wireless, alike).

4.1.4 Downloading data from the NPAC-SMS

The NPAC-SMS holds the master copy of the mapping from DN to LRNs as it is the center which notifies all SPs of a subscriber's new LRN when the subscriber ports.

The point in the process in which the download occurs can be seen as step (g) above. As with the above process description, many states have documented their defined version of the conte of the NPAC-SMS and the CMIP interface (including objects) between the regional NPAC-SN and the LSMS. As a result, currently seven versions of the interface exist. However, the NAN NP Working Group has taken on the effort to arrive at a single, standard NPAC-SMS set of objects. WSPs are urged to become involved and comment on these efforts.

Besides downloading the data to the NP-SCP (e.g., DN to LRN mapping), the NPAC-SMS is being designed to have the capability to download the necessary data for the GTT functions required for number portability. More about this download can be found in documents which describe the NPAC-SMS and its interface.

4.1.5 Auditing the NPAC-SMS Data

Along with defining a process by which data is delivered to or received from the NPAC-SMS into an SPs systems, an audit function is being defined to allow for SPs to validate the contents of the database at periodic intervals.

4.2 Number Administration

4.2.1 IMSI, MIN and MDN Administration

MDNs are NANP numbers and should be administered as today's wireless directory numbers ar administered today.

IMSIs are assigned by the Bellcore Numbering Consulting Group (NCG) upon carrier request and in accordance with the *IMSI Assignment Guidelines and Procedures*, Version 1. February 12, 1996. For WSPs that choose to deploy IMSI MSIDs, they must plan for and implement an administration process for obtaining, assigning, maintaining, and aging as appropriate IMSIs.

In WNP the assignment and management of MINs as MSIDs is yet to be determined. As with IMSIs. WSPs using MINs as MSIDs must plan for and implement an administration process for obtaining, assigning, maintaining and aging as appropriate MINs. The WNP Solution assumes that the MINs used by WSPs today for dialable numbers will be retained by the WSPs for MSII usage.

4.2.2 Disconnected Numbers

When a wireless subscriber terminates service (i.e. does not port but rather drops service altogether), the WSP may choose to provide intercept treatment. During this period, no change are indicated to the NPAC-SMS and calls will continue to be routed to the WSP.

During this time, the service provider may offer standard or custom intercept treatment for call: to this number. After the period of providing intercept expires, the serving WSP then notifies to NPAC-SMS that the portable number entry should be removed. The number reverts to the service provider which was allocated the NPA-NXX associated with the freed number.

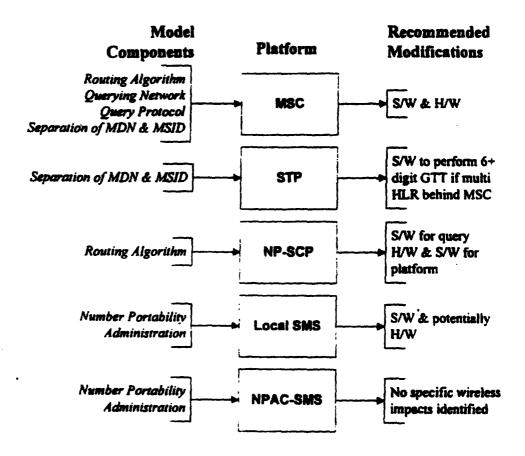
4.2.3 Location Routing Number Assignments to WSP

In order to receive calls for ported subscribers within a serving area, a WSP needs assigned at least one LRN within that serving area. A WSP may designate a single MSC in the serving area as a single point of entry for incoming calls (e.g., a gateway MSC). In this case, the gateway MSC would require at least one LRN value for other networks to route calls. Once the MSC receives the call; it may invoke existing wireless procedures for obtaining a temporary routing number to complete the call. The MSCs behind the gateway do not require LRNs.

Alternatively, a WSP may choose to allocate at least one LRN for every MSC in the serving a which would result in routing calls to various MSCs and eliminating the concept of a gateway MSC. If multiple MSCs share the same code block (i.e., NPA-NXX), then a unique LRN is needed to identify each MSC. Either method is acceptable and at the discretion of the WSP.

Assigning an LRN to an MSC may require that the MSC be listed in the LERG. A majority o MSCs are currently not LERG-listed. The exact impact requires further study.

4.3 Billing


The impacts and processes regarding billing, including clearinghouse reconciliation, have not been identified at this time for WNP. However, the separation of the MDN and MSID, allowing the MSID to identify the WSP with the first six digits should alleviate some of the impacts to such things as the roaming tables. Additionally, discussions have been held regarding the addition of some billing parameter (probably not dependent on MIN, IMSI, nor MDN and yet be defined) which might help identify the service provider for the calling record.

5. WIRELESS NUMBER PORTABILITY SYSTEM IMPACTS

This section summarized the anticipated WNP architecture impacts to each of the entities in the network architecture.

Figure 5-1 below maps the components of the wireless number portability building blocks in Figure 2-1 to the wireless NP platforms (e.g., network elements, operations systems). Most platforms map to only one building block; the exception is the MSC as it maps to multiple. T figure also illustrates the recommended modifications related to each platform.

Figure 5-1 Mapping of Platforms to Wireless Number Portability Model

5.1 Impacts to the Mobile Station

The following impacts are anticipated on the MSs:

- Because the solution separates the MSID from the MDN, the MS will need to contain both the MDN and the MSID. This implies both IMSI (if IMSI capable) as well as the MIN (as long as MIN is used as an MSID).
- The MS will register with the IMSI on an IMSI capable network or with the MIN on MIN-capable networks. If the mobile is not IMSI-capable, it will register with MIN or IMSI or MIN networks.
- It will be desirable for the phones to display the MDN or nothing instead of the MSID when the subscriber powers on his/her phone.
- Porting from one SP to another SP may require that the mobile station be reprogramme with a MIN or an IMSI as appropriate to the recipient provider. The impacts of portability on pseudo-IMSI mobile stations will require further study.

5.2 Impacts to the Air Interfaces

No impacts have been identified for the following air interface protocols: IS-136, IS-95 and GSM.

However, if a provider chooses to implement an IMSI network, the following impacts should be known (and is being worked on by the IS-136 standards committees):

In the IS-136A standards, if both an IMSI and a MIN are programmed in the mobile, the MIN takes precedence over the IMSI while in the mobile's home country. Therefore, modifications to the standard are required in order to reverse the precedence, allowing IMSI to be the primary identifier in an IMSI-capable network.

5.3 Impacts to IS-41 Signaling

The following impacts to the IS-41 signaling standards are anticipated:

- All IS-41 messages which contain MIN (e.g., Registration Notification) will need to be enhanced to support MSID.
- The contents of the dialed digits parameter in the IS-41 messages (e.g., LocationRequest) will be the MDN instead of the MIN.
- IS-41 will need to be enhanced to support Automatic Code Gap (ACG), particularly to the NP-SCP.
- A query must be defined and documented. This could be either an existing, a modifie or a new IS-41 message.
- The IS-41 Location Request Return Results message should be modified in order to distinguish whether the destination digits are a TLDN or another type of digits (e.g. C Forwarding digits).

MIN is currently a mandatory parameter in the SMSREQ message. For SMS in WN the appropriate value (for what is a MIN today) will be the MDN. The SMSREQ message should be modified to require the MDN.

5.4 Impacts to GSM Signaling

The GSM signaling modifications to support WNP involve two areas. The first area involve: ISUP which should be based on the same modifications adopted for wireline portability. The include the following³³:

- new FCI bit indication for translated number
- new GAP code point to indicate Called Party Number

The other change involves the Mobile Application Part (MAP) protocol which is a specific ty of TCAP protocol. The changes include the following:

- a definition of a query message and response
- incorporation of ACG protocol and procedures

5.5 Impacts to the Home Location Register

The WNP architecture notes the following impacts on the HLR:

- The HLR must provide a mapping between the MSID and the MDN for all subscribe
- The MDN should be made available to the MSC/VLR at the time of registration for a subscribers.
- If multiple MDNs are used for the same MSID, the HLR must designate one MDN a
 preferred MDN for the domestic network.
- The HLR must support any enhancements to the IS-41 (or equivalent) messages required to accommodate MSID, MIN, MDN, and IMSI, as appropriate.

5.6 Impacts to the Mobile Switching Center

The MSC is impacted in multiple areas including registration/validation, call origination, call delivery, roamer tables, digit screening, query capabilities, and others. Some of these items a detailed below.

³³ CCPN SS7 network capability in T1 LB 557 Signaling System Number 7-Number Portability Call Completion to a Port Number - Integrated Text currently in ballot to become an American National Standard